







# Femtosecond structural probing of warm dense matter with Betatron laser-based x-ray source

Fabien Dorchies CELIA laboratory, University Bordeaux, CNRS, CEA, France











La Nouvelle-Aquitaine et l'Europe agissent ensemble pour votre territoire

## **Non-equilibrium Warm Dense Matter**

- One way to achieve WDM is to use femtosecond laser isochoric heating
  - Ultrafast and selective excitation of the electrons
    - ✓ Electron lattice/ions thermal equilibration
    - ✓ Electron energy transport

- ✓ Non-equilibrium phase transitions (bond softening, bond hardening, ...)
- Access to the electron –nuclei dynamic interplay and more stringent simulation testing



K. Widmann et al., Phys. Rev. Lett. 92 125002 (2004)

Pro al



Perspectives

### A macroscopic approach : two-temperature model (TTM)

- A crude and simplified model
  - Macroscopic approach
  - Electrons are just described by  $T_e$
  - Lattice / ions by  $T_i$
- Prediction of the electron / ion dynamic
  - Electron heating  $(C_{o})$
  - Electron energy transport  $(\kappa_{e})$
  - Electron ion thermal equilibration  $(C_e, G_{e-i}, C_i)$
  - Role of the expansion (TTM integrated in hydro code) \*\*
  - Estimation of the "thermal" melting time  $(T_i \ge T_{melt})$





Two-temperature model \*

 $\frac{C_e}{dt} \frac{dT_e}{dt} = -G_{e-i}(T_e - T_i) + \nabla(\kappa_e \nabla T_e) + S(t)$   $\frac{C_i}{dt} \frac{dT_i}{dt} = G_{e-i}(T_e - T_i) + \nabla(\kappa_i \nabla T_i)$ 

• Physics is carried over into the appropriate choice of coefficients

\*\* ESTHER code in J.-P. Colombier et al., Phys. Rev. B 71, 165406 (2005)

<sup>\*</sup> S. I. Anisimov et al., JETP **39**, 375 (1974)

CFI I A

## **Experimental investigation of non-equilibrium WDM**

#### • Need for time-resolved diagnostics (ps down to fs)

- Optical probing (reflectivity, transmission, phase, ... dielectric function)
- $\Rightarrow$  Indirect observable that relies on models to be connected with the atomic scale
- X-ray probing

#### $\Rightarrow$ Provides, in principle, a "direct" access to the atomic scale

- ✓ Diffraction (XRD) (including electron diffraction)
- $\Rightarrow$  Structure factor
- ✓ Scattering (XRTS)
- $\Rightarrow$  Structure factor (elastic),  $T_e$ ,  $n_e$ ,  $Z^*$  (inelastic)

✓ Absorption spectroscopy (XAFS)
 ⇒ Electron structure & atomic order (short-range or periodicity)

A. Rousse et al., Nature (London) 410 65 (2001)
R. Ernstorfer et al., Science 323 1033 (2009)
G. Gregori et al., Phys. Rev. E 67 026412 (2003)

B. I. Cho et al., Phys. Rev. Lett. 106 167601 (2011)



DOS

#### **Principle of X-ray Absorption Near-Edge Spectroscopy** (XANES)

- X-ray absorption spectroscopy near a given edge (K, L, M => element selective)
  - Dominated by the photoelectric effect and associated electron transitions from core levels up to unoccupied states near the continuum



X-ray Absorption: Principles, Applications, Techniques of [...] XANES (Wiley, New York, 1988)



#### L3-edge XANES calculations in warm dense copper (1/3)

- XANES spectra near the L3-edge probe 3d-states from  $2p_{3/2}$  (selection rule)
  - *Ab initio* DFT + linear response theory to calculate X-ray absorption
  - Very good agreement in cold solid copper calculation vs experiment (fcc)



 $\Rightarrow$  Interpretation of the different spectral features in terms of electron and atomic structures

F. Dorchies and V. Recoules, Physics Reports 657, 1 (2016)

Perspectives

#### L3-edge XANES calculations in warm dense copper (2/3)

- Observation of a pre-edge when  $T_e \ge 0.25 \text{ eV}$ 
  - Some 3d electrons are promoted above the Fermi energy
    - ✓ Similar trend at thermal equilibrium or non-equilibrium
    - ✓ From solid density down to expanded liquid one



⇒ Fair diagnostic of the electron temperature  $T_e$ ⇒ Previously observed in the B. I. Cho *et al.* experiment \*

\* B. I. Cho et al., Phys. Rev. Lett. **106**, 167601 (2011) N. Jourdain et al., Phys. Rev. B **101**, 125127 (2020)



Perspectives

### L3-edge XANES calculations in warm dense copper (3/3)

#### • Observation of post-edge modulations

- Van Hove singularities in the electron Density of State
  - ✓ Results from the fcc electronic band structure (dE/dk = 0)
  - ✓ Associated characteristic peaks in the XANES spectra
- These modulations are sensitive to the lattice periodicity
- They disappear in the liquid phase



 $\Rightarrow$  Diagnostic of the crystalline structure

N. Jourdain et al., Phys. Rev. B 101, 125127 (2020)

#### **Picosecond-time-resolved XANES measurements** (1/2)

#### • Time-resolved XANES station (CELIA)

- Ti:Sa laser, 100 mJ focused on target (T1) => "thermal" laser-plasma-based X-ray source
  - ✓ Laser duration adjustable from  $\le 100$  fs to  $\sim 10$  ps
  - ✓ 10 Hz laser, but effective repetition rate of 1 Hz (motions of target T1 and sample T2)



 $\Rightarrow$  1.2  $\pm$  0.2 ps rms time resolution (from following measurements)

F. Dorchies et al., Rev. Sci. Instrum. 86, 073106 (2015)

# **Picosecond-time-resolved XANES measurements** (2/2)

- Pump (optical laser) probe (X-ray) experiment
  - About 300 shots to build each absorption spectrum (~ 5 mn)
  - Observation and time-resolution of the pre-edge  $\implies$   $T_e(t)$





N. Jourdain et al., Phys. Rev. B 97, 075148 (2018)

#### **Electron-ion thermal equilibration dynamics**



N. Jourdain et al., Phys. Rev. B 97, 075148 (2018)

# **Solid-liquid transition dynamics** (1/2)

- About 2000 shots are required to resolve post-edge modulations (~ 30 mn)
  - A delay is observed between:
    - ✓ pre-edge increase (electron heating T<sub>e</sub>)
    - ✓ and modulations decrease (*melting*)



 $\Rightarrow$  Melting time measurement



#### N. Jourdain et al., Phys. Rev. Lett. 126, 065001 (2021)

# **Solid-liquid transition dynamics** (2/2)

- Liquid phase observed in  $\sim 1$  ps, compatible with a thermal melting
  - TTM independently controlled with  $T_e(t)$ 
    - ✓ In good agreement with theory (no bond hardening is expected in this fluence regime)
    - $\checkmark$  In contradiction with electron diffraction measurements \*





#### $\Rightarrow$ Bond hardening evidence needs for higher level of heating and fs time-resolution

N. Jourdain et al., Phys. Rev. Lett. 126, 065001 (2021)

\* *R. Ernstorfer* et al., *Science* **323**, *5917* (2009) \* *M. Z. Mo* et al., *Science* **360**, *1451* (2018)



• Betatron beamline at LOA

- Ideal characteristics for femtosecond XANES (broadband, ~ 10 fs duration)



#### A. Rousse et al., Phys. Rev. Lett. 93, 13 (2004)

B. Mahieu et al., Nature Communications 9, 3276 (2018)

See Kim Ta Phuoc's talk



- At high flux, the  $T_e$  rise time is slowed down (2.5x10<sup>13</sup> >  $Q_{sat} = 1.5x10^{13} W/cm^2$ ) ۲
  - Within the fist picosecond
  - $\Rightarrow$  Electron transport is no longer ballistic



A. Grolleau et al., Phys. Rev. Lett. 127, 275901 (2021)

Toroidal crystal

loa

# **Investigation of the electron transport dynamics** (2/2)

- Data are best reproduced with pure Diffusive electron Transport
  - DT = Diffusive Transport
  - BT = Ballistic Transport
  - CT = Composite Transport
    - ✓ Saturated Ballistic (60 %)
    - ✓ Then Diffusive (40 %)
  - $\Rightarrow$  Suggests a reduction of the electron mean free path
  - $\Rightarrow$  A tool to test  $\kappa_e$  models



 $\frac{dT_e}{dT_e} = -G_{ee}(T_e - T_e) + V(r_e) + T_e$ 

$$C_{e} \frac{c}{dt} = -G_{e-i}(T_{e} - T_{i}) + \nabla(\kappa_{e} \nabla T_{e}) + S(t)$$
$$C_{i} \frac{dT_{i}}{dt} = G_{e-i}(T_{e} - T_{i}) + \nabla(\kappa_{i} \nabla T_{i})$$



A. Grolleau et al., Phys. Rev. Lett. 127, 275901 (2021)

#### Conclusion

- Time-resolved X-ray measurements of non-equilibrium WDM
  - Non-equilibrium situations shed light on the electron ion dynamic interplay
  - X-ray diagnostics test DFT simulations at their suitable atomic scale
  - XANES probes electron and atomic structures
- Time-resolved XANES measurements on warm dense copper (*ps down to fs*)
  - Electron-ion thermal equilibration (~ 10 ps)
  - "Thermal" melting observed (~ 1 ps)
  - Diffusive electron transport dominant at higher flux (~ 1 ps over 100 nm)
  - $\Rightarrow$  Two-Temperature Model successfully tested, coupled to hydro code ESTHER ( $\leq 3 eV$ )

Cu

Mo

Si<sub>3</sub>N<sub>4</sub>

CIERS

#### **Perspectives**

- Bond hardening on copper ?
  - Requires higher flux, then thin sample and fs resolution with high signal-to-noise ratio
- Other materials
  - Molybdenum as a transition metal prototype => L3-edge (2.52 keV)
  - Silicon nitride (insulator) => K-edge (1.84 keV)
  - $\Rightarrow$  Require specific studies to interpret the XANES patterns in the WDM regime
- Other facilities (XANES demonstrated on XFEL)
  - X-FEL provides fs resolution and high X-ray flux
  - Dedicated XANES device implemented on Eu-XFEL / HED
  - $\Rightarrow$  Couple time-resolved XANES / XRD

J. Gaudin et al., Scientific Report **4** 4724 (2014) M. Harmand et al., Phys. Rev. B **92**, 024108 (2015) F. Dorchies et al., Phys. Rev. B **92**, 144201 (2015)

13/03/24



European

CELIA





### Thank you for your attention

- Main contributors
  - N. Jourdain\*, A. Grolleau\*, S. Briand\*
     CELIA, University Bordeaux, France
  - L. Lecherbourg, P. Renaudin, V. Recoules CEA-DIF, Arpajon, France\*
  - K. Ta Phuoc, J. Gautier, B. Mahieu LOA, Palaiseau, France





loa